考研數(shù)學(xué) - 話題

復(fù)習(xí)線性代數(shù)要注重知識(shí)點(diǎn)的銜接與轉(zhuǎn)換
查看(667) 回復(fù)(0)
smallbs
  • 積分:157
  • 注冊(cè)于:2010-08-11
發(fā)表于 2010-09-23 20:05
樓主
考研復(fù)習(xí)現(xiàn)在已經(jīng)進(jìn)入整理沖刺階段,這段時(shí)間大家應(yīng)把復(fù)習(xí)過的知識(shí)系統(tǒng)化綜合化,注意搞細(xì)搞透搞活,也可適當(dāng)做幾套模擬題,這既可查漏補(bǔ)缺也可兼代積累一點(diǎn)臨場(chǎng)經(jīng)驗(yàn)。本文現(xiàn)針對(duì)線性代數(shù)課程的特點(diǎn),提如下建議供考生參考。

  一、注重對(duì)基本概念的理解與把握,正確熟練運(yùn)用基本方法及基本運(yùn)算。

  線性代數(shù)的概念很多,重要的有:

  代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(jià)(矩陣、向量組),線性組合與線性表出,線性相關(guān)與線性無關(guān),極大線性無關(guān)組,基礎(chǔ)解系與通解,解的結(jié)構(gòu)與解空間,特征值與特征向量,相似與相似對(duì)角化,二次型的標(biāo)準(zhǔn)形與規(guī)范形,正定,合同變換與合同矩陣。

  往年常有考生沒有準(zhǔn)確把握住概念的內(nèi)涵,也沒有注意相關(guān)概念之間的區(qū)別與聯(lián)系,導(dǎo)致做題時(shí)出現(xiàn)錯(cuò)誤。例如,矩陣A=(α1,α2,……,αm)與B=(β1,β2……,βm)等價(jià),意味著經(jīng)過初等變換可由A得到B,要做到這一點(diǎn),關(guān)鍵是看秩r(A)與r(B)是否相等,而向量組α1,α2,……αm與β1,β2,……βm等價(jià),說明這兩個(gè)向量組可以互相線性表出,因而它們有相同的秩,但是向量組有相同的秩時(shí),并不能保證它們必能互相線性表現(xiàn),也就得不出向量組等價(jià)的信息,因此,由向量組α1,α2,……αm與β1,β2,……βm等價(jià),可知矩陣A=(α1,α2,……αm)與B=(β1,β2,……βm)等價(jià),但矩陣A與B等價(jià)并不能保證這兩個(gè)向量組等價(jià)。

  又如,實(shí)對(duì)稱矩陣A與B合同,即存在可逆矩陣C使CTAC=B,要實(shí)現(xiàn)這一點(diǎn),關(guān)鍵是二次型xTAx與xTBx的正、負(fù)慣性指數(shù)是否相同,而A與B相似是指有可逆矩陣P使P-1AP=B成立,進(jìn)而知A與B有相同的特征值,如果特征值相同可知正、負(fù)慣性指數(shù)相同,但正負(fù)慣性指數(shù)相同時(shí),并不能保證特征值相同,因此,實(shí)對(duì)稱矩陣A~B?A?B,即相似是合同的充分條件。

  線性代數(shù)中運(yùn)算法則多,應(yīng)整理清楚不要混淆,基本運(yùn)算與基本方法要過關(guān),重要的有:

  行列式(數(shù)字型、字母型)的計(jì)算,求逆矩陣,求矩陣的秩,求方陣的冪,求向量組的秩與極大線性無關(guān)組,線性相關(guān)的判定或求參數(shù),求基礎(chǔ)解系,求非齊次線性方程組的通解,求特征值與特征向量(定義法,特征多項(xiàng)式基礎(chǔ)解系法),判斷與求相似對(duì)角矩陣,用正交變換化實(shí)對(duì)稱矩陣為對(duì)角矩陣(亦即用正交變換化二次型為標(biāo)準(zhǔn)形)。

  二、注重知識(shí)點(diǎn)的銜接與轉(zhuǎn)換,知識(shí)要成網(wǎng),努力提高綜合分析能力。

  線性代數(shù)從內(nèi)容上看縱橫交錯(cuò),前后聯(lián)系緊密,環(huán)環(huán)相扣,相互滲透,因此解題方法靈活多變,復(fù)習(xí)時(shí)應(yīng)當(dāng)常問自己做得對(duì)不對(duì)?再問做得好不好?只有不斷地歸納總結(jié),努力搞清內(nèi)在聯(lián)系,使所學(xué)知識(shí)融會(huì)貫通,接口與切入點(diǎn)多了,熟悉了,思路自然就開闊了。

  例如:設(shè)A是m×n矩陣,B是n×s矩陣,且AB=0,那么用分塊矩陣可知B的列向量都是齊次方程組Ax=0的解,再根據(jù)基礎(chǔ)解系的理論以及矩陣的秩與向量組秩的關(guān)系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,進(jìn)而可求矩陣A或B中的一些參數(shù)。

  再如,若A是n階矩陣可以相似對(duì)角化,那么,用分塊矩陣處理P-1AP=∧可知A有n個(gè)線性無關(guān)的特征向量,P就是由A的線性無關(guān)的特征向量所構(gòu)成,再由特征向量與基礎(chǔ)解系間的聯(lián)系可知此時(shí)若λi是ni重特征值,則齊次方程組(λiE-A)x=0的基礎(chǔ)解系由ni個(gè)解向量組成,進(jìn)而可知秩r(λiE-A)=n-ni,那么,如果A不能相似對(duì)角化,則A的特征值必有重根且有特征值λi使秩r(λiE-A)<n-ni,若A是實(shí)對(duì)稱矩陣,則因A必能相似對(duì)角化而知對(duì)每個(gè)特征值λi必有r(λiE-A)=n-ni,此時(shí)還可以利用正交性通過正交矩陣來實(shí)現(xiàn)相似對(duì)角化。

  又比如,對(duì)于n階行列式我們知道:若|A|=0,則Ax=0必有非零解,而Ax=b沒有惟一解(可能有無窮多解,也可能無解),而當(dāng)|A|≠0時(shí),可用克萊姆法則求Ax=b的惟一解;可用|A|證明矩陣A是否可逆,并在可逆時(shí)通過伴隨矩陣來求A-1;對(duì)于n個(gè)n維向量α1,α2,……αn可以利用行列式|A|=|α1α2……αn|是否為零來判斷向量組的線性相關(guān)性;矩陣A的秩r(A)是用A中非零子式的最高階數(shù)來定義的,若r(A)<r,則A中r階子式全為0;求矩陣A的特征值,可以通過計(jì)算行列式|λE-A|,若λ=λ0是A的特征值,則行列式|λ0E-A|=0;判斷二次型xTAx的正定性,可以用順序主子式全大于零。

  凡此種種,正是因?yàn)榫性代數(shù)各知識(shí)點(diǎn)之間有著千絲萬縷的聯(lián)系,代數(shù)題的綜合性與靈活性就較大,同學(xué)們整理時(shí)要注重串聯(lián)、銜接與轉(zhuǎn)換。

  三、注重邏輯性與敘述表述

  線性代數(shù)對(duì)于抽象性與邏輯性有較高的要求,通過證明題可以了解考生對(duì)數(shù)學(xué)主要原理、定理的理解與掌握程度,考查考生的抽象思維能力、邏輯推理能力。大家復(fù)習(xí)整理時(shí),應(yīng)當(dāng)搞清公式、定理成立的條件,不能張冠李戴,同時(shí)還應(yīng)注意語(yǔ)言的敘述表達(dá)應(yīng)準(zhǔn)確、簡(jiǎn)明。

  線性代數(shù)中常見的證明題型有:

  證|A|=0;證向量組α1,α2,……αt的線性相關(guān)性,亦可引伸為證α1,α2……,αt是齊次方程組Ax=0的基礎(chǔ)解系;證秩的等式或不等式;證明矩陣的某種性質(zhì),如對(duì)稱,可逆,正交,正定,可對(duì)角化,零矩陣等;證齊次方程組是否有非零解;線性方程組是否有解(亦即β能否由α1,α2……,αs線性表出);對(duì)給出的兩個(gè)方程組論證其同解性或有無公共解;證二次型的正定性,規(guī)范形等。

  總之,數(shù)學(xué)題目千變?nèi)f化,有各種延伸或變式,同學(xué)們要在考試中取得好成績(jī),一定要認(rèn)真仔細(xì)地復(fù)習(xí),華而不實(shí)靠押題碰運(yùn)氣是行不通的,必須要重視三基,多思多議,不斷地總結(jié)經(jīng)驗(yàn)與教訓(xùn),做到融會(huì)貫通。

回復(fù)話題
上傳/修改頭像

美國(guó)的貨幣名稱是什么?

考研論壇提示:
1、請(qǐng)勿發(fā)布個(gè)人聯(lián)系方式或詢問他人聯(lián)系方式,包括QQ和手機(jī)等。
2、未經(jīng)允許不得發(fā)布任何資料出售、招生中介等廣告信息。
3、如果發(fā)布了涉及以上內(nèi)容的話題或跟帖,您在考研網(wǎng)的注冊(cè)賬戶可能被禁用。

網(wǎng)站介紹 | 關(guān)于我們 | 聯(lián)系方式 | 廣告業(yè)務(wù) | 幫助信息
©1998-2015 ChinaKaoyan.com Network Studio. All Rights Reserved.

中國(guó)考研網(wǎng)-聯(lián)系地址:上海市郵政信箱088-014號(hào) 郵編:200092 Tel & Fax:021 - 5589 1949 滬ICP備12018245號(hào)