考研數(shù)學 - 話題

數(shù)學考試線性代數(shù)復習小結(jié)
查看(791) 回復(0)
smallbs
  • 積分:157
  • 注冊于:2010-08-11
發(fā)表于 2010-09-23 20:09
樓主
概念多、定理多、符號多、運算規(guī)律多、內(nèi)容相互縱橫交錯,知識前后緊密聯(lián)系是線性代數(shù)課程的特點,故考生應充分理解概念,掌握定理的條件、結(jié)論、應用,熟悉符號意義,掌握各種運算規(guī)律、計算方法,并及時進行總結(jié),抓聯(lián)系,使學知識能融會貫通,舉一反三,根據(jù)考試大綱的要求,這里再具體指出如下:

  行列式的重點是計算,利用性質(zhì)熟練準確的計算出行列式的值。

  矩陣中除可逆陣、伴隨陣、分塊陣、初等陣等重要概念外,主要也是運算,其運算分兩個層次,一是矩陣的符號運算,二是具體矩陣的數(shù)值運算。例如在解矩陣方程中,首先進行矩陣的符號運算,將矩陣方程化簡,然后再代入數(shù)值,算出具體的結(jié)果,矩陣的求逆(包括簡單的分塊陣)(或抽象的,或具體的,或用定義,或是用公式A -1= 1 A*,或A用初等行變換),A和A*的關(guān)系,矩陣乘積的行列式,方陣的冪等也是?嫉膬(nèi)容之一。

  關(guān)于向量,證明(或判別)向量組的線性相關(guān)(無關(guān)),線性表出等問題的關(guān)鍵在于深刻理解線性相關(guān)(無關(guān))的概念及幾個相關(guān)定理的掌握,并要注意推證過程中邏輯的正確性及反證法的使用。

  向量組的極大無關(guān)組,等價向量組,向量組及矩陣的秩的概念,以及它們相互關(guān)系也是重點內(nèi)容之一。用初等行變換是求向量組的極大無關(guān)組及向量組和矩陣秩的有效方法。

  在Rn中,基、坐標、基變換公式,坐標變換公式,過渡矩陣,線性無關(guān)向量組的標準正交化公式,應該概念清楚,計算熟練,當然在計算中列出關(guān)系式后,應先化簡,后代入具體的數(shù)值進行計算。

  行列式、矩陣、向量、方程組是線性代數(shù)的基本內(nèi)容,它們不是孤立隔裂的,而是相互滲透,緊密聯(lián)系的,例如∣A∣≠0〈===〉A(chǔ)是可逆陣〈===〉r(A)=n(滿秩陣)〈===〉A(chǔ)的列(行)向量組線性無關(guān)〈===〉A(chǔ)X=0唯一零解〈===〉A(chǔ)X=b對任何b均有(唯一)解〈===〉A(chǔ)=P1 P2…PN,其中PI(I=1,2,…,N)是初等陣〈===〉r(AB)=r(B)<===>A初等行變換

  I〈===〉A(chǔ)的列(行)向量組是Rn的一個基〈===〉A(chǔ)可以是某兩個基之間的過渡矩陣等等。這種相互之間的聯(lián)系綜合命題創(chuàng)造了條件,故對考生而言,應該認真總結(jié),開拓思路,善于分析,富于聯(lián)想使得對綜合的,有較多彎道的試題也能順利地到達彼岸。

  關(guān)于特征值、特征向量。一是要會求特征值、特征向量,對具體給定的數(shù)值矩陣,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由給定矩陣的特征值求其相關(guān)矩陣的特征值(的取值范圍),可用定義Aξ=λξ,同時還應注意特征值和特征向量的性質(zhì)及其應用,二是有關(guān)相似矩陣和相似對角化的問題,一般矩陣相似對角化的條件。實對稱矩陣的相似對角化及正交變換相似于對角陣,反過來,可由A的特征值,特征向量來確不定期A的參數(shù)或確定A,如果A是實對稱陣,利用不同特征值對應的特征向量相互正交,有時還可以由已知λ1的特征向量確定出λ2(λ2≠λ1)對應的特征向量,從而確定出A.三是相似對角化以后的應用,在線性代數(shù)中至少可用來計算行列式及An.

  將二次型表示成矩陣形式,用矩陣的方法研究二次型的問題主要有兩個:一是化二次型為標準形,這主要是正交變換法(這和實對稱陣正交相似對角陣是一個問題的兩種提法),在沒有其他要求的情況下,用配方法得到標準形可能更方便些;二是二次型的正定性問題,對具體的數(shù)值二次型,一般可用順序主子式是否全部大于零來判別,而抽象的由給定矩陣的正定性,證明相關(guān)矩陣的正定性時,可利用標準形,規(guī)范形,特征值等到證明,這時應熟悉二次型正定有關(guān)的充分條件和必要條件。

回復話題
上傳/修改頭像

目前中國有10元紙幣嗎?

考研論壇提示:
1、請勿發(fā)布個人聯(lián)系方式或詢問他人聯(lián)系方式,包括QQ和手機等。
2、未經(jīng)允許不得發(fā)布任何資料出售、招生中介等廣告信息。
3、如果發(fā)布了涉及以上內(nèi)容的話題或跟帖,您在考研網(wǎng)的注冊賬戶可能被禁用。

網(wǎng)站介紹 | 關(guān)于我們 | 聯(lián)系方式 | 廣告業(yè)務 | 幫助信息
©1998-2015 ChinaKaoyan.com Network Studio. All Rights Reserved.

中國考研網(wǎng)-聯(lián)系地址:上海市郵政信箱088-014號 郵編:200092 Tel & Fax:021 - 5589 1949 滬ICP備12018245號