從隨機(jī)現(xiàn)象說概率論
查看(739) 回復(fù)(0) |
|
smallbs
|
發(fā)表于 2010-09-23 21:19
樓主
從隨機(jī)現(xiàn)象說起在自然界和現(xiàn)實(shí)生活中,一些事物都是相互聯(lián)系和不斷發(fā)展的。在它們彼此間的聯(lián)系和發(fā)展中,根據(jù)它們是否有必然的因果聯(lián)系,可以分成截然不同的兩大類:一類是確定性的現(xiàn)象。這類現(xiàn)象是在一定條件下,必定會導(dǎo)致某種確定的結(jié)果。舉例來說,在標(biāo)準(zhǔn)大氣壓下,水加熱到100攝氏度,就必然會沸騰。事物間的這種聯(lián)系是屬于必然性的。通常的自然科學(xué)各學(xué)科就是專門研究和認(rèn)識這種必然性的,尋求這類必然現(xiàn)象的因果關(guān)系,把握它們之間的數(shù)量規(guī)律。
另一類是不確定性的現(xiàn)象。這類現(xiàn)象是在一定條件下,它的結(jié)果是不確定的。舉例來說,同一個工人在同一臺機(jī)床上加工同一種零件若干個,它們的尺寸總會有一點(diǎn)差異。又如,在同樣條件下,進(jìn)行小麥品種的人工催芽試驗(yàn),各棵種子的發(fā)芽情況也不盡相同,有強(qiáng)弱和早晚的分別等等。為什么在相同的情況下,會出現(xiàn)這種不確定的結(jié)果呢?這是因?yàn)椋覀冋f的“相同條件”是指一些主要條件來說的,除了這些主要條件外,還會有許多次要條件和偶然因素又是人們無法事先一一能夠掌握的。正因?yàn)檫@樣,我們在這一類現(xiàn)象中,就無法用必然性的因果關(guān)系,對個別現(xiàn)象的結(jié)果事先做出確定的答案。事物間的這種關(guān)系是屬于偶然性的,這種現(xiàn)象叫做偶然現(xiàn)象,或者叫做隨機(jī)現(xiàn)象。 在自然界,在生產(chǎn)、生活中,隨機(jī)現(xiàn)象十分普遍,也就是說隨機(jī)現(xiàn)象是大量存在的。比如:每期體育彩票的中獎號碼、同一條生產(chǎn)線上生產(chǎn)的燈泡的壽命等,都是隨機(jī)現(xiàn)象。因此,我們說:隨機(jī)現(xiàn)象就是:在同樣條件下,多次進(jìn)行同一試驗(yàn)或調(diào)查同一現(xiàn)象,所的結(jié)果不完全一樣,而且無法準(zhǔn)確地預(yù)測下一次所得結(jié)果的現(xiàn)象。隨機(jī)現(xiàn)象這種結(jié)果的不確定性,是由于一些次要的、偶然的因素影響所造成的。 隨機(jī)現(xiàn)象從表面上看,似乎是雜亂無章的、沒有什么規(guī)律的現(xiàn)象。但實(shí)踐證明,如果同類的隨機(jī)現(xiàn)象大量重復(fù)出現(xiàn),它的總體就呈現(xiàn)出一定的規(guī)律性。大量同類隨機(jī)現(xiàn)象所呈現(xiàn)的這種規(guī)律性,隨著我們觀察的次數(shù)的增多而愈加明顯。比如擲硬幣,每一次投擲很難判斷是那一面朝上,但是如果多次重復(fù)的擲這枚硬幣,就會越來越清楚的發(fā)現(xiàn)它們朝上的次數(shù)大體相同。 我們把這種由大量同類隨機(jī)現(xiàn)象所呈現(xiàn)出來的集體規(guī)律性,叫做統(tǒng)計規(guī)律性。概率論和數(shù)理統(tǒng)計就是研究大量同類隨機(jī)現(xiàn)象的統(tǒng)計規(guī)律性的數(shù)學(xué)學(xué)科。 概率論的產(chǎn)生和發(fā)展 概率論產(chǎn)生于十七世紀(jì),本來是又保險事業(yè)的發(fā)展而產(chǎn)生的,但是來自于賭博者的請求,卻是數(shù)學(xué)家們思考概率論中問題的源泉。 早在1654年,有一個賭徒梅累向當(dāng)時的數(shù)學(xué)家帕斯卡提出一個使他苦惱了很久的問題:“兩個賭徒相約賭若干局,誰先贏 m局就算贏,全部賭本就歸誰。但是當(dāng)其中一個人贏了 a (a三年后,也就是1657年,荷蘭著名的天文、物理兼數(shù)學(xué)家惠更斯企圖自己解決這一問題,結(jié)果寫成了《論機(jī)會游戲的計算》一書,這就是最早的概率論著作。 近幾十年來,隨著科技的蓬勃發(fā)展,概率論大量應(yīng)用到國民經(jīng)濟(jì)、工農(nóng)業(yè)生產(chǎn)及各學(xué)科領(lǐng)域。許多興起的應(yīng)用數(shù)學(xué),如信息論、對策論、排隊論、控制論等,都是以概率論作為基礎(chǔ)的。 概率論和數(shù)理統(tǒng)計是一門隨機(jī)數(shù)學(xué)分支,它們是密切聯(lián)系的同類學(xué)科。但是應(yīng)該指出,概率論、數(shù)理統(tǒng)計、統(tǒng)計方法又都各有它們自己所包含的不同內(nèi)容。 概率論-是根據(jù)大量同類隨機(jī)現(xiàn)象的統(tǒng)計規(guī)律,對隨機(jī)現(xiàn)象出現(xiàn)某一結(jié)果的可能性作出一種客觀的科學(xué)判斷,對這種出現(xiàn)的可能性大小做出數(shù)量上的描述;比較這些可能性的大小、研究它們之間的聯(lián)系,從而形成一整套數(shù)學(xué)理論和方法。 數(shù)理統(tǒng)計-是應(yīng)用概率的理論來研究大量隨機(jī)現(xiàn)象的規(guī)律性;對通過科學(xué)安排的一定數(shù)量的實(shí)驗(yàn)所得到的統(tǒng)計方法給出嚴(yán)格的理論證明;并判定各種方法應(yīng)用的條件以及方法、公式、結(jié)論的可靠程度和局限性。使我們能從一組樣本來判定是否能以相當(dāng)大的概率來保證某一判斷是正確的,并可以控制發(fā)生錯誤的概率。 統(tǒng)計方法-是一上提供的方法在各種具體問題中的應(yīng)用,它不去注意這些方法的的理論根據(jù)、數(shù)學(xué)論證。 應(yīng)該指出,概率統(tǒng)計在研究方法上有它的特殊性,和其它數(shù)學(xué)學(xué)科的主要不同點(diǎn)有: 第一,由于隨機(jī)現(xiàn)象的統(tǒng)計規(guī)律是一種集體規(guī)律,必須在大量同類隨機(jī)現(xiàn)象中才能呈現(xiàn)出來,所以,觀察、試驗(yàn)、調(diào)查就是概率統(tǒng)計這門學(xué)科研究方法的基石。但是,作為數(shù)學(xué)學(xué)科的一個分支,它依然具有本學(xué)科的定義、公理、定理的,這些定義、公理、定理是來源于自然界的隨機(jī)規(guī)律,但這些定義、公理、定理是確定的,不存在任何隨機(jī)性。 第二,在研究概率統(tǒng)計中,使用的是“由部分推斷全體”的統(tǒng)計推斷方法。這是因?yàn)樗芯康膶ο?隨機(jī)現(xiàn)象的范圍是很大的,在進(jìn)行試驗(yàn)、觀測的時候,不可能也不必要全部進(jìn)行。但是由這一部分資料所得出的一些結(jié)論,要全體范圍內(nèi)推斷這些結(jié)論的可靠性。 第三,隨機(jī)現(xiàn)象的隨機(jī)性,是指試驗(yàn)、調(diào)查之前來說的。而真正得出結(jié)果后,對于每一次試驗(yàn),它只可能得到這些不確定結(jié)果中的某一種確定結(jié)果。我們在研究這一現(xiàn)象時,應(yīng)當(dāng)注意在試驗(yàn)前能不能對這一現(xiàn)象找出它本身的內(nèi)在規(guī)律。 概率論的內(nèi)容 概率論作為一門數(shù)學(xué)分支,它所研究的內(nèi)容一般包括隨機(jī)事件的概率、統(tǒng)計獨(dú)立性和更深層次上的規(guī)律性。 概率是隨機(jī)事件發(fā)生的可能性的數(shù)量指標(biāo)。在獨(dú)立隨機(jī)事件中,如果某一事件在全部事件中出現(xiàn)的頻率,在更大的范圍內(nèi)比較明顯的穩(wěn)定在某一固定常數(shù)附近。就可以認(rèn)為這個事件發(fā)生的概率為這個常數(shù)。對于任何事件的概率值一定介于 0和 1之間。 有一類隨機(jī)事件,它具有兩個特點(diǎn):第一,只有有限個可能的結(jié)果;第二,各個結(jié)果發(fā)生的可能性相同。具有這兩個特點(diǎn)的隨機(jī)現(xiàn)象叫做“古典概型”。 在客觀世界中,存在大量的隨機(jī)現(xiàn)象,隨機(jī)現(xiàn)象產(chǎn)生的結(jié)果構(gòu)成了隨機(jī)事件。如果用變量來描述隨機(jī)現(xiàn)象的各個結(jié)果,就叫做隨機(jī)變量。 隨機(jī)變量有有限和無限的區(qū)分,一般又根據(jù)變量的取值情況分成離散型隨機(jī)變量和非離散型隨機(jī)變量。一切可能的取值能夠按一定次序一一列舉,這樣的隨機(jī)變量叫做離散型隨機(jī)變量;如果可能的取值充滿了一個區(qū)間,無法按次序一一列舉,這種隨機(jī)變量就叫做非離散型隨機(jī)變量。 在離散型隨機(jī)變量的概率分布中,比較簡單而應(yīng)用廣泛的是二項式分布。如果隨機(jī)變量是連續(xù)的,都有一個分布曲線,實(shí)踐和理論都證明:有一種特殊而常用的分布,它的分布曲線是有規(guī)律的,這就是正態(tài)分布。正態(tài)分布曲線取決于這個隨機(jī)變量的一些表征數(shù),其中最重要的是平均值和差異度。平均值也叫數(shù)學(xué)期望,差異度也就是標(biāo)準(zhǔn)方差。 數(shù)理統(tǒng)計的內(nèi)容 數(shù)理統(tǒng)計包括抽樣、適線問題、假設(shè)檢驗(yàn)、方差分析、相關(guān)分析等內(nèi)容。抽樣檢驗(yàn)是要通過對子樣的調(diào)查,來推斷總體的情況。究竟抽樣多少,這是十分重要的問題,因此,在抽樣檢查中就產(chǎn)生了“小樣理論”,這是在子樣很小的情況下,進(jìn)行分析判斷的理論。 適線問題也叫曲線擬和。有些問題需要根據(jù)積累的經(jīng)驗(yàn)數(shù)據(jù)來求出理論分布曲線,從而使整個問題得到了解。但根據(jù)什么原則求理論曲線?如何比較同一問題中求出的幾種不同曲線?選配好曲線,有如何判斷它們的誤差?……就屬于數(shù)理統(tǒng)計中的適線問題的討論范圍。 假設(shè)檢驗(yàn)是只在用數(shù)理統(tǒng)計方法檢驗(yàn)產(chǎn)品的時候,先作出假設(shè),在根據(jù)抽樣的結(jié)果在一定可靠程度上對原假設(shè)做出判斷。 方差分析也叫做離差分析,就是用方差的概念去分析由少數(shù)試驗(yàn)就可以做出的判斷。 由于隨機(jī)現(xiàn)象在人類的實(shí)際活動中大量存在,概率統(tǒng)計隨著現(xiàn)代工農(nóng)業(yè)、近代科技的發(fā)展而不斷發(fā)展,因而形成了許多重要分支。如:隨機(jī)過程、信息論、極限理論、試驗(yàn)設(shè)計、多元分析等。 |
回復(fù)話題 |
||
上傳/修改頭像 |
|
|