廈門大學(xué)數(shù)學(xué)科學(xué)學(xué)院導(dǎo)師介紹:莊平輝
查看(462) 回復(fù)(0) |
|
喇叭花
|
發(fā)表于 2015-01-08 17:19
樓主
姓名:莊平輝
性別:男 職稱:副教授 所獲學(xué)位:博士 授予單位:廈門大學(xué) 學(xué)院:數(shù)學(xué)學(xué)院 研究方向:微分方程數(shù)值方法及其理論分析,分數(shù)階微分方程 Phone:18959285820 Email: zxy1104@xmu.edu.cn 通信地址:廈門大學(xué)數(shù)學(xué)科學(xué)學(xué)院 郵編:361005 學(xué)習(xí)工作經(jīng)歷 1978-1982: 福州大學(xué)計算機科學(xué)系計算數(shù)學(xué)專業(yè),獲學(xué)士學(xué)位; 1985-1988: 福州大學(xué)計算機科學(xué)系計算數(shù)學(xué)專業(yè),獲碩士學(xué)位; 2005-2008: 廈門大學(xué)數(shù)學(xué)科學(xué)學(xué)院計算數(shù)學(xué)專業(yè),獲博士學(xué)位; 2006年6月-2006年9月:澳大利亞昆士蘭理工大學(xué),訪問學(xué)者; 2009年7月-2009年12月:澳大利亞昆士蘭理工大學(xué),訪問學(xué)者; 1982年-1985年 石油大學(xué)計算機科學(xué)系,助教; 1988年4月至今:廈門大學(xué)數(shù)學(xué)科學(xué)學(xué)院,1988年晉升講師,1998年晉升副教授。 教學(xué)簡介 主講過的課程:數(shù)值逼近,數(shù)值代數(shù),高級語言程序設(shè)計,計算機實用技術(shù),數(shù)據(jù)庫管理,Visual Basic程序設(shè)計,高等數(shù)學(xué),線性代數(shù)等。 編寫的教材:《高等數(shù)學(xué)精品課堂》(上,下冊),林建華,莊平輝,林應(yīng)標編著,廈門大學(xué)出版社出版,2007年11月。 獲得的教學(xué)表彰和獎勵:2009年廈門大學(xué)工商銀行獎(教學(xué)類)。 研究領(lǐng)域 微分方程數(shù)值方法及其理論分析,分數(shù)階微分方程 基金項目 (1)非結(jié)構(gòu)網(wǎng)格譜元法及其應(yīng)用,國家自然科學(xué)基金面上項目(11071203),項目組主要成員,2011-2013. (2) 分數(shù)階擴散方程的數(shù)值方法及其理論分析,福建省自然科學(xué)基金,項目主持者,2005-2007. (3) 奇異攝動偏微分方程問題的數(shù)值方法及其應(yīng)用,國家自然科學(xué)基金(10271098),項目組主要成員, 2003.1-2005.12. (4)譜元法湍流大渦模擬,國家自然科學(xué)基金, 項目組成員,2002.1-2004.12 (5) 非線性發(fā)展方程及其科學(xué)計算,國家自然科學(xué)基金,項目組成員,1998.1-2000.12 近年來發(fā)表的主要學(xué)術(shù)論文 (1) P. Zhuang, Y. T. Gu, F. Liu, I. Turner and P. K. D. V. Yarlagadda, Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method, International Journal for Numerical Methods in Engineering, Vol. 88, 13(2012),1346–1362. (2)Q. Liu, Y. Gu, P. Zhuang, F. Liu and Y. Nie, An implicit RBF meshless approach for time fractional diffusion equations, Computational Mechanics, 48(2011), 1-12. (3)Y.T. Gu, P. Zhuang and Q. Liu, An advanced meshless method for time fractional diffusion equation, International Journal of Computational Methods, 8(4) (2011), 653-665. (4)Y. T. Gu, P. Zhuang and F. Liu, An Advanced Implicit Meshless Approach for the Non-Linear Anomalous Subdiffusion Equation, Computer Modeling in Engineering & Sciences, 56(3)(2010), 303-334. (5)Ping-Hui ZHUANG and Qing-Xia LIU, Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative, Applied Mathematics and Mechanocs, 30(12)(2009), 1533-1546. (6)P. Zhuang, F. Liu, V. Anh and I. Turner, Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process, IMA Journal of Applied Mathematics, 74(2009), 645-667. (7)P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. on Numerical Analysis, 47(3)(2009),1760-1781. (8)S. Chen, F. Liu, P. Zhuang and V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Applied Mathematical Modelling, 33 (2009) , 256-273. (9)P. Zhuang, F. Liu, V. Anh and I. Turner, New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation, SIAM J. on Numerical Analysis, 46(2) (2008) ,1079-1095. (10)F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage , Stability and Convergence of the difference Methods for the space-time fractional advection-diffusion equation, Applied Mathematics and Computation, 91, (2007), 12-20. (11)P. Zhuang and F. Liu, Finite difference approximation for two-dimensional time fractional diffusion equation, J. Algorithms & Computational Technology, 1 (2007), 1-15. (12)P. Zhuang and F. Liu, Implicit difference approximation for the two-dimensional space-time fractional diffusion equation, J. Appl. Math. Computing, 25(2007), 269-282. (13)P. Zhuang, F. Liu, I. Turner and V. Anh, Numerical Treatment for the Fractional Fokker-Planck Equation, ANZIAM J., 48 (2007), 759-774. (14) Y. Lin, P. Zhuang and F. Liu, Fractional high order approximation for the system of the nonlinear fractional ordinary differential equations, Journal of Xiamen University(NATURAL Science), 6 (2007), 765-769. (15)J. Song, F. Liu and P. Zhuang, An approximate solution for the non-linear anomalous subdiffusion equation using the Adomian decomposition method, Journal of Xiamen University (NATURAL Science), 46(4), (2007), 469-473. |
回復(fù)話題 |
||
上傳/修改頭像 |
|
|