考研數(shù)學(xué):線性代數(shù)解題的八種思維定勢
查看(651) 回復(fù)(0) |
|
kun1023
|
發(fā)表于 2016-09-19 09:56
樓主
1.題設(shè)條件與代數(shù)余子式Aij或A*有關(guān),則立即聯(lián)想到用行列式按行(列)展開定理以及AA*=A*A=|A|E。
2.若涉及到A、B是否可交換,即AB=BA,則立即聯(lián)想到用逆矩陣的定義去分析。 3.若題設(shè)n階方陣A滿足f(A)=0,要證aA+bE可逆,則先分解出因子aA+bE再說。 4.若要證明一組向量a1,a2,…,as線性無關(guān),先考慮用定義再說。 5.若已知AB=0,則將B的每列作為Ax=0的解來處理再說。 6.若由題設(shè)條件要求確定參數(shù)的取值,聯(lián)想到是否有某行列式為零再說。 7.若已知A的特征向量ζ,則先用定義Aζ=λζ處理一下再說。 8.若要證明抽象n階實對稱矩陣A為正定矩陣,則用定義處理一下再說。 |
回復(fù)話題 |
||
上傳/修改頭像 |
|
|