網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號(hào)
分類(lèi):導(dǎo)師信息 來(lái)源:武漢理工大學(xué)材料科學(xué)與工程學(xué)院 2019-07-17 相關(guān)院校:武漢理工大學(xué)
一、姓名:向萬(wàn)春
二、基本情況:
1、出生年月:1983.1
2、學(xué)位:博士
3、職稱(chēng):副研究員
4、工作院系:硅酸鹽建筑材料國(guó)家重點(diǎn)實(shí)驗(yàn)室
三、教育經(jīng)歷(從大學(xué)開(kāi)始):
2001-2005:陜西師范大學(xué),理學(xué)學(xué)士
2005-2010:中國(guó)科學(xué)院化學(xué)研究所,理學(xué)博士
四、工作經(jīng)歷:
2010-2011:中國(guó)科學(xué)院西安光學(xué)精密機(jī)械研究所,助理研究員
2011-2014:澳大利亞莫納什大學(xué)博士后
五、研究領(lǐng)域(不多于3個(gè)):
染料敏化太陽(yáng)能電池
太陽(yáng)能的有效利用是解決化石能源的日益枯竭及溫室效應(yīng)和環(huán)境污染等問(wèn)題的重要途徑之一。太陽(yáng)能電池能實(shí)現(xiàn)無(wú)機(jī)械轉(zhuǎn)化和污染副產(chǎn)品的情況下,把太陽(yáng)能直接轉(zhuǎn)化為電能,一直是研究熱點(diǎn)。染料敏化太陽(yáng)能電池由于其價(jià)格便宜、工藝簡(jiǎn)單、環(huán)境友好、形狀多樣化等優(yōu)點(diǎn)而可能替代傳統(tǒng)的硅基電池。染料敏化太陽(yáng)能電池通常由在導(dǎo)電基底上的敏化納晶多孔半導(dǎo)體作為工作電極,由鉑等作為對(duì)電極,在兩片電極中間由含有氧化還原電對(duì)的電解質(zhì)構(gòu)成。氧化還原電對(duì)在兩片電極之間傳輸電子,同時(shí)在電子注入到半導(dǎo)體能帶后使激發(fā)態(tài)染料得以再生。近年,腐蝕性低,吸光弱的基于聯(lián)吡啶鈷的電解質(zhì)使得電解質(zhì)的發(fā)展逐漸轉(zhuǎn)向無(wú)碘電解質(zhì)。我們已經(jīng)成功將過(guò)渡金屬(鈷、錳等)配合物氧化還原電對(duì)用于染料敏化太陽(yáng)能電池中并取得了優(yōu)異的光電轉(zhuǎn)換效率。通過(guò)對(duì)電解質(zhì)進(jìn)行凝膠固化,器件的穩(wěn)定性得到了很大的提升。同時(shí),我們采用水作為電解質(zhì)溶劑來(lái)代替有毒的有機(jī)溶劑,獲得了目前世界效率最高的水電解質(zhì)染料敏化太陽(yáng)能電池,這是制備環(huán)境友好的太陽(yáng)能電池器件的一個(gè)重要途徑。研究成果分別發(fā)表在能源與化學(xué)頂級(jí)期刊Energy & Environ. Sci.,Angew. Chem. In. Ed.,ChemSusChem等并被選為封面文章和熱點(diǎn)文章進(jìn)行報(bào)道。
鈣鈦礦太陽(yáng)能電池
有機(jī)無(wú)機(jī)雜化鈣鈦礦太陽(yáng)能電池自2012年起已在世界范圍內(nèi)進(jìn)行廣泛的研究,并被科學(xué)雜志選為2013年科學(xué)界十大突破之一。在這種新型全固態(tài)雜化太陽(yáng)能電池中,具有ABX3晶型結(jié)構(gòu)的有機(jī)-無(wú)機(jī)-鹵素鈣鈦礦材料為吸光材料。A是有機(jī)陽(yáng)離子,B是金屬離子,X是鹵素離子。這種三鹵鈣鈦礦材料具有很寬的吸光范圍(300-800 nm)和高摩爾吸光系數(shù),因此,很薄的一層吸光層(~ 300 nm)就足以滿足高效鈣鈦礦太陽(yáng)能電池的要求。而提高鈣鈦礦太陽(yáng)能電池光電轉(zhuǎn)換效率和穩(wěn)定性的方法在于材料的選擇和工藝的優(yōu)化。這種低成本和簡(jiǎn)單工藝的太陽(yáng)能電池是光伏建筑一體化工程的重要組成部分。
六、科研項(xiàng)目(不多于5項(xiàng)):
水電解質(zhì)pH值的調(diào)控及其對(duì)p型染料敏化太陽(yáng)能電池光電性能的影響和機(jī)理研究,國(guó)家自然科學(xué)基金,25萬(wàn),2016年1月-2018年12月,項(xiàng)目負(fù)責(zé)人
乙二胺鈷水電解質(zhì)在p-型染料敏化太陽(yáng)能電池中的應(yīng)用,武漢理工大學(xué)自主創(chuàng)新研究基金,5萬(wàn),2015年1月-2016年12月,項(xiàng)目負(fù)責(zé)人
TiO2基粉體的制備、成形及其在光電領(lǐng)域的應(yīng)用,硅酸鹽建筑材料國(guó)家重點(diǎn)實(shí)驗(yàn)室自主研究課題,15萬(wàn),2015年1月-2015年12月,項(xiàng)目負(fù)責(zé)人
七、代表性論文及著作(不多于10項(xiàng)):
1. Wanchun Xiang, Fuzhi Huang,Yi-Bing Cheng, Udo Bach and Leone Spiccia, Energy Environ. Sci., 2013, 6,121-127. (封面文章和熱點(diǎn)文章)
2. Wanchun Xiang, Akhil Gupta,Muhammad Kalim Kashif, Ante Bilic,Richard A. Evans, Leone Spicciaand Udo Bach, ChemSusChem, 2013, 6,256-260.
3. Wanchun Xiang, WenchaoHuang, Udo Bach and Leone Spiccia, Chem. Commun.,2013, 49, 8997-8999.
4. Wanchun Xiang,Yanyan Fang, Shibi Fang, Yuan Lin, Electrochimica Acta, 2011,56,1605-1610.
5. Wanchun Xiang,Dehong Chen, Rachel A. Caruso, Yibing Cheng, Udo Bach and Leone Spiccia, ChemSusChem,2015, 8, 3704- 3711.
6. Cunku Dong, Wanchun Xiang,Fuzhi Huang, Dongchuan Fu, Udo Bach, Yi-Bing Cheng, Xin Li and Leone Spiccia, Angew.Chem. Int. Ed., 2014, 53, 6933-6937
7. Cunku Dong, Wanchun Xiang, Fuzhi Huang, Dongchuan Fu, Wenchao Huang, Udo Bach,Yi-Bing Cheng Leone Spiccia and Xin Li, Nanoscale, 2014, 6, 3704-3711.
8. YangChen, Fuzhi Huang, Wanchun Xiang,Dehong Chen, Lu Cao, Leone Spiccia, Rachel A. Caruso and Yi-Bing Cheng,Nanoscale,, 2014, 6, 13787–13794
9. Jeremiah Toster, K. Swaminathan Iyer, Wanchun Xiang, Federico Rosei, Leone Spiccia and Colin L. Raston, Nanoscale,2013, 5, 873-876.
10. Yujian Huang, Wanchun Xiang, Xiaowen Zhou, Yuan Lin, Shibi Fang, Electrochimica Acta, 2013, 89, 29-34.
八、聯(lián)系方式:
1、E-mail:xiangwanchun@whut.edu.cn
2、工作地址(實(shí)驗(yàn)室):武漢理工大學(xué)東院硅酸鹽建筑材料國(guó)家重點(diǎn)實(shí)驗(yàn)室南樓600室
二、 Name:Wanchun Xiang
二、Brief introduction:
1、Date of Birth: 1983.1
2、Degree:PhD
3、Title:Associate Professor
4、Working department:State Key Laboratory of Silicate Materials for Architectures
三、Education experience :
B.S. in Chemistry, Shaanxi Normal University, China, 2005
PhD in Chemistry, Institute of Chemistry, Chinese Academy of Sciences, China, 2010
四、Working ecperience:
2010-2011:Xi’An Institute of Optics and Precision Mechanics, Chinese Academy of Sciences,China, Assistant Professor
2011-2014:Monash University, Australia, Research Fellow
五、Research field (no more than 3)
Due to the gradual depletion of fossil fuels and the increasing energy demand to support the current model of economic growth,mankind is facing a global energy problem. Amongst the number of alternative resources, renewable energies are rapidly becoming the leading solution to fulfill the growing needs of power sources. At present, solar energy is considered the most promising renewable resource. A simple calculation leads self-evidently to the conclusion that covering only around 0.1% of the earth’s surface by means of energy conversion devices having an efficiency of about 10% would satisfy the present global energy needs. These encouraging numbers are inducing the scientific community to make even greater efforts towards the direction of improving solar energy conversion technologies as well as proposing new intriguing solutions.
Dye-sensitized solar cells
Dye-sensitized solar cells (DSCs) have been intensely studied as promising renewable energy technology with the potential to achieve high energy conversion efficiencies at low cost. DSCs typically consist of a sensitized mesoporous semiconductor film on a conductive substrate as working electrode and a platinized counter electrode, bridged by an electrolyte film containing the reduced and oxidized forms of the redox mediator. The latter mediates charge transport between the two electrodes and is also responsible for the regeneration of the photooxidized dye, following electron injection into the TiO2. The application of a cobalt(II)/(III) tris(bipyridine) based electrolyte has recently resulted in a benchmark efficiency of >12%. This result has accelerated the transition to non-iodide based electrolytes, which are less corrosive and exhibit weaker absorption of visible light. Transition metal, such as cobalt, iron and manganese based redox couple have been successfully developed and promising efficiencies were obtained in both n-type and p-type DSCs. By solidifying the electrolyte, the stability of the devices can be further improved. More mportantly, the replacement of organic solvent in the electrolyte with water paves the way for environmentally friendly devices, which keeps us in the leading role in this area worldwide. These breakthroughs were published on Energy & Environ.Sci. and Angew. Chem. In. Ed., and one of them was selected as the front-cover and hot article.
Perovskite solar cells
Alkylammonium lead(II) halides ([CH3NH3PbX3]n) have been shown to be efficient photovoltaic materials with excellent light harvesting, high carrier mobility, and facile solution processability. A rapid growth of intensive research into this photovoltaic technology since 2012 has resulted in a certified energy conversion efficiency over 20% and the topic has been selected as one of the top 10 breakthroughs of 2013 as announced by the journal Science.These organic– inorganic lead(II) complexes crystallize in the well-known perovskite structure with general formula ABX3, where A is an organic cation, Bis a metal, and X is a halide. A very thin perovskite film (~ 300 nm) is sufficient enough for highly-performed perovskite solar cell due to its broad light absorption range from 300 to 800 nm and a high molar extinction coefficient. Materials selection and process optimization are essential to high performance of perovskite solar cells with long-term stability. This new type of solar cells with low cost and easy fabrication is the key part of the building integrated photovoltaics (BIPV).
六、Research project(no more than 5)
The effect of pH on the performance of p-type dye-sensitized solar cells. National Science Fund of China, 0.25 million. Jan. 2016- Dec. 2018. Project Leader
The application of cobalt ethylenediamine into p-type dye-sensitized solar cells. 5,0000 CNY, Wuhan University of Technology, Jan. 2015-Dec. 2016. Project Leader
The preparation, formation and application of TiO2-based particles. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Jan.2015- Dec. 2015, Project Leader
七、Representative papers and works
1. Wanchun Xiang, Fuzhi Huang,Yi-Bing Cheng, Udo Bach and Leone Spiccia, Energy Environ. Sci., 2013, 6,121-127. (front cover and hot article)
2. Wanchun Xiang, Akhil Gupta,Muhammad Kalim Kashif, Ante Bilic,Richard A. Evans, Leone Spicciaand Udo Bach, ChemSusChem, 2013, 6,256-260.
3. Wanchun Xiang, Wenchao Huang, Udo Bach and Leone Spiccia, Chem. Commun.,2013, 49, 8997-8999.
4. Wanchun Xiang, Yanyan Fang, Shibi Fang, Yuan Lin, Electrochimica Acta,2011,56,1605-1610.
5. Wanchun Xiang, Dehong Chen, Rachel A. Caruso, Yibing Cheng, Udo Bach and Leone Spiccia, ChemSusChem, 2015, 8, 3704- 3711.
6. Cunku Dong, Wanchun Xiang, Fuzhi Huang, Dongchuan Fu, Udo Bach, Yi-Bing Cheng, Xin Li and Leone Spiccia, Angew. Chem. Int. Ed.,2014, 53, 6933-6937
7. Cunku Dong, Wanchun Xiang, Fuzhi Huang, Dongchuan Fu, Wenchao Huang, Udo Bach, Yi-Bing Cheng Leone Spiccia and Xin Li, Nanoscale, 2014, 6, 3704-3711.
8. Yang Chen, Fuzhi Huang, Wanchun Xiang, Dehong Chen, Lu Cao, Leone Spiccia, Rachel A. Caruso and Yi-Bing Cheng,Nanoscale,, 2014, 6, 13787–13794
9. Jeremiah Toster, K. Swaminathan Iyer, Wanchun Xiang, Federico Rosei, Leone Spiccia and Colin L. Raston,Nanoscale, 2013, 5, 873-876.
10. Yujian Huang, Wanchun Xiang, Xiaowen Zhou, Yuan Lin,Shibi Fang, Electrochimica Acta, 2013, 89, 29-34.
八、Contact information :
1、E-mail:xiangwanchun@whut.edu.cn
2、Office:Room 600, South Building, State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology No.122 Luoshi Rd, Wuhan, China
掃碼關(guān)注
考研信息一網(wǎng)打盡
網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號(hào)