網(wǎng)站介紹 關于我們 聯(lián)系方式 廣告業(yè)務 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號
分類:導師信息 來源:福州大學 2020-01-10 相關院校:福州大學
福州大學數(shù)學與計算機科學學院計算機圖形學與多媒體/人工智能研究生導師甘敏介紹如下:
個人簡介
甘敏,男,博士,教授,博導。2010年獲中南大學控制科學與工程專業(yè)博士學位。2010年6月至2016年10月在合肥工業(yè)大學電氣與自動化工程學院工作,2016年11月至今在福州大學數(shù)學與計算機科學學院工作。2011年7月至9月在香港城市大學系統(tǒng)工程與工程管理學院做研究助理工作,2013年4月至12月在澳門大學科技學院做博士后工作,2015年7月至2016年5月在美國達科他州大學做博士后工作。主要研究方向為:機器學習中的優(yōu)化方法、計算機視覺、系統(tǒng)辨識、圖像處理。主持國家自然科學基金面上項目“基于核矩陣的柔性系數(shù)回歸模型及其在風電場風速間歇性建模中的應用”,國家自然科學基金青年項目“基于變系數(shù)模型與函數(shù)逼近的非線性非平穩(wěn)系統(tǒng)建模與預測”。
可招收計算機科學與技術專業(yè)博士生,計算機軟件與理論、應用數(shù)學、運籌學與控制論、計算機應用,軟件工程等方向的學術和專業(yè)型碩士研究生。歡迎應用數(shù)學、運籌學與控制論的學術碩士來交流。
目前我們在做計算機視覺中的超分辨率,圖像處理的去模糊,機器學習中的稀疏主成分分析、低秩矩陣分解等問題。特別歡迎數(shù)學基礎好,或對機器學習、系統(tǒng)建模、深度學習有一定基礎的優(yōu)秀同學,盡早聯(lián)系我。期待與勤奮學習、勇于探索的同學共同進步!
電話:130557240--
郵箱: aganmin@aliyun.com
研究方向:機器學習、數(shù)據(jù)分析、圖像處理
辦公室:數(shù)計學院2號樓510
主要學術論文
[1] Jian-nan Su, Min GAN (甘敏, 通訊作者), Guang-Yong Chen, C. L. Philip Chen. Attention-Based Convolutional Neural Networks for Image Super-Resolution. Submitted to IEEE Transactions on Neural Networks and Learning System.
[2] Min GAN (甘敏), Yu Guan, Guang-Yong Chen, C. L. Philip Chen. Recursive Variable Projection Algorithm for a Class of Separable Nonlinear Models. Submitted to IEEE Transactions on Signal Processing, Major revision.
[3] Min GAN (甘敏), Hong-Tao Zhu, Guang-Yong Chen, C. L. Philip Chen. Weighted Generalized Cross Validation Based Regularization for Broad Learning System. Submitted to IEEE Transactions on Cybernetics.
[4] Qiong-Ying Chen, Min GAN (甘敏, 通訊作者), Guang-Yong Chen, C. L. Philip Chen. Model Selection for RBF-ARX model. IEEE Transactions on Cybernetics, Major Revision.
[5] Feng Zhou, Min GAN (甘敏, 通訊作者), C. L. Philip Chen. State-dependent ARX Model-based RPC with Variable Feedback Control Laws for Output Tracking, IEEE Transactions on Industrial Electronics, major revision.
[6] Qiong-Ying Chen, Min GAN (甘敏, 通訊作者), C. L. Philip Chen. Variable projection approach based on BFGS algorithm for blind deconvolution, Submitted to IEEE Transactions on Computational Imaging.
[7] Jia Chen, Min GAN (甘敏, 通訊作者), Guang-Yong Chen, C. L. Philip Chen. Constrained Variable Projection Optimization for a Stationary RBF-AR Model. Neurocomputing, Major revision.
[8] Jing Chen, Min GAN, C. L. Philip Chen. Robust standard gradient descent algorithm for ARX models using Aitken acceleration technique, Submitted to IEEE Transactions on Automatic Control.
[9] Guang-Yong Chen, Min GAN (甘敏, 通訊作者), Dong-Qing Wang, C. L. Philip Chen. Insights into Algorithms of Separable Nonlinear Least Squares Problems. Submitted to IEEE Transactions on Image Processing.
[10] Yu Guan, Yun-zhi Huang, Guang-Yong Chen, Min GAN (甘敏, 通訊作者). A novel L2-norm noise constrained estimation for image restoration based on Gradient projection and variable projection, submitted to IEEE Signal Processing Letters.
[11] Shu-qiang Wang, Xiang-yu Wang, Yan-yan Shen, Zhi-le Yang, Min GAN (甘敏, 通訊作者), Bai-ying Lei. Diabetic Retinopathy Diagnosis using Multi-channel Generative Adversarial Network with Semi-supervision, IEEE Transactions on Automation Science and Engineering, Conditionally Accept.
[12] Dong-Qing Wang, Suo Zhang, Min GAN (甘敏), and Jian-long Qiu, "A novel EM identification method for Hammerstein systems with missing output data," IEEE Transactions on Industrial Informatics, 2019, acceptable for publication, DOI: 10.1109/TII.2019.2931792.
[13] Min GAN (甘敏), Guang-Yong Chen, Long Chen, C. L. Philip Chen. Term selection for a class of nonlinear separable models. IEEE Transactions on Neural Networks and Learning Systems, acceptable for publication, 2019, DOI (identifier) 10.1109/TNNLS.2019.2904952.
[14] Guang-Yong Chen, Min GAN (甘敏, 通訊作者), C. L. Philip Chen, Han-Xiong Li. Basis Function Matrix based Flexible Coefficient Autoregressive Models: A Framework for Time Series and Nonlinear System Modeling. IEEE Transactions on Cybernetics, acceptable for publication, DOI (identifier) 10.1109/TCYB.2019.2900469, 2019, in press.
[15] Guang-Yong Chen, Shu-Qiang Wang, Dong-Qing Wang, Min GAN (甘敏, 通訊作者). Regularization Methods for Separable Nonlinear Models. Nonlinear Dynamics, 2019, 98: 1287–1298.
[16] Min GAN (甘敏), Xiao-xian Chen, Ding Feng, Guang-Yong Chen, C. L. Philip Chen. Adaptive RBF-AR Models Based on Multi-innovation Least Squares Method. IEEE Signal Processing Letters, 2019, 26(8): 1182-1186.
[17] Guang-Yong Chen, Min GAN (甘敏, 通訊作者), Feng Ding, C. L. Philip Chen. Modified Gram-Schmidt Method Based Variable Projection Algorithm for Separable Nonlinear Models. IEEE Transactions on Neural Networks and Learning System, 2019, 30(8): 2410-2418. (ESI高被引論文,hot topic論文)
[18] Guang-Yong Chen, Min GAN (甘敏, 通訊作者), C. L. Philip Chen, Han-Xiong Li. A Regularized Variable Projection Algorithm for Separable Nonlinear Least Squares Problems. IEEE Transactions on Automatic Control, 2019, 64(2): 526 – 537. (長文,ESI高被引論文,hot topic論文)
[19] Guang-Yong Chen, Min GAN (甘敏, 通訊作者), C. L. Philip Chen, Long Chen. A Two-Stage Estimation Algorithm Based on Variable Projection Method for GPS Positioning. IEEE Transactions on Instrumentation & Measurement, 2018, 67 (11): 2518 - 2525.
[20] Min GAN (甘敏), C. L. Philip Chen, Guang-Yong Chen, Long Chen. On some separated algorithms for separable nonlinear squares problems [J]. IEEE Transactions on Cybernetics, 2018, 48(10): 2866-2874. (ESI高被引論文,hot topic論文)
[21] Guang-Yong Chen, Min GAN (甘敏, 通訊作者). Generalized Exponential Autoregressive Models for Nonlinear Time Series: Stationarity, Estimation and Applications. Information Sciences, 2018,438:46-57.
[22] Min GAN(甘敏), Long Chen, C. Y. Zhang, Hui Ping “A Self-Organizing State Space Type Microstructure Model for Financial Asset Allocation”. IEEE Access, 2016, 4: 8035-8043.
[23] Min GAN(甘敏), C. L. Philip Chen, Long Chen, Chun-yang Zhang. Exploiting the Interpretability and Forecasting Ability of the RBF-AR Model for Nonlinear Time Series [J]. International Journal of Systems Science, 2016, 47(8): 1868-1876.
[24] Min GAN(甘敏), Han-Xiong Li, C. L. Philip Chen, Long Chen. A Potential Method for Determining Nonlinearity in Wind Data [J], IEEE Power and Energy Technology Systems Journal, 2015, 2(2): 74-81.
[25] Min GAN(甘敏), C. L. Philip Chen, Han-Xiong Li, Long Chen. Gradient radial basis function based varying-coefficient Autoregressive Model for nonlinear and nonstationary time series [J]. IEEE Signal Processing Letters, 2015, 22(7): 809-812.
[26] Min GAN(甘敏), Han-Xiong Li, Hui Peng. A variable projection approach for efficient Estimation of RBF-ARX model [J]. IEEE Transactions on Cybernetics, 2015, 45(3): 476-485.
[27] Chun-yang Zhang, C. L. Philip Chen, Long Chen, Min Gan(甘敏). Fuzzy Restricted Boltzmann Machine to Enhance Deep Learning [J]. IEEE Transactions on Fuzzy Systems, 2015, 23(6): 2163-2173.
[28] Min GAN(甘敏), Han-xiong LI. An Efficient Variable Projection Formulation for Separable Nonlinear Least Squares Problems [J]. IEEE Transactions on Cybernetics, 2014, 44(5): 707-711.
[29] Chun-yang Zhang, C. L. Philip Chen, Min Gan(甘敏). Predictive Deep Boltzmann Machine for Multi-Period Wind Speed forecasting [J]. IEEE Transactions on sustainable energy, 2015, 6(4): 1416-1425.
[30] Min Gan(甘敏), Yu Cheng, Kai Liu, Gang-lin Zhang. Seasonal time series prediction based on a quasi-linear autoregressive model [J]. Applied Soft Computing, 2014, 24(1): 13-18.
[31] Geng Zhang, Han-Xiong Li, Min GAN(甘敏). Design a Wind Speed Prediction Model Using Probabilistic Fuzzy System [J], IEEE Transactions on Industrial Informatics, 2012, 8(4): 819-827.
[32] Min GAN(甘敏), Yun-zhi Huang, Ming Ding, Xue-ping Dong. Testing for nonlinearity in solar radiation time series by a fast method of surrogate data [J]. Solar Energy, 2012, 86(9): 2893-2896.
[33] Min Gan(甘敏), Hui Peng, Liyuan Chen. A Global-local Approach to Parameter Optimization of RBF-type Models [J]. Information Sciences, 2012, 197(15): 144-160.
[34] Min Gan(甘敏), Hui Peng, Xueping Dong. A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series modeling [J]. Applied Mathematical Modelling, 2012, 36(7): 2911-2919.
[35] Min Gan(甘敏), Hui Peng. Stability analysis of RBF-network based state-dependent autoregressive model for nonlinear time series [J]. Applied Soft Computing, 2012, 12(1): 174-181.
[36] Min Gan(甘敏), Ming Ding, Yun-zhi Huang, Xueping Dong. The effect of different state sizes on Mycielski approach for wind speed prediction [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2012, 109:89-93.
[37] Min Gan(甘敏), Hui Peng, et al. A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling [J]. Information Sciences, 2010, 180: 4370~4383.
[38] Min Gan(甘敏), Hui Peng, et al. An Adaptive Decision Maker for Constrained Evolutionary Optimization [J]. Applied Mathematics and Computation, 2010, 215(12): 4172~4184.
[39] 甘敏,丁明,董學平. 基于改進的Mycielski方法的風速時間序列預測[J]. 系統(tǒng)工程理論與實踐,2013, 33(4) : 1084-1088.
[40] 甘敏,彭輝,黃云志,董學平. 自組織狀態(tài)空間模型參數(shù)初始分布搜索算法[J].自動化學報,2012, 38(9): 1538-1543.
[41] 甘敏,彭輝,陳曉紅. 基于金融市場微結構模型和進化算法的動態(tài)資產(chǎn)分配[J].系統(tǒng)工程學報. 2011,26(3): 314-321.
[42] 甘敏,彭輝,陳曉紅. RBF-AR模型在非線性時間序列預測中的應用[J].系統(tǒng)工程理論與實踐. 2010,30(6):1055~1061.
[43] 甘敏,彭輝,王勇. 多目標優(yōu)化與適應懲罰的混合約束優(yōu)化進化算法[J]. 控制與決策, 2010, 25(3): 378~382.
[44] 甘敏,彭輝.不同基函數(shù)對RBF-ARX 模型的影響研究[J].中南大學學報. 2010, 41(6): 2231~2235.
[45] 甘敏,彭輝. 基于帶回歸權重的RBF-AR模型的混沌時間序列預測[J]. 系統(tǒng)工程與電子技術, 2010,32(4):820~824.
[46] 甘敏,彭輝. RBF神經(jīng)網(wǎng)絡參數(shù)優(yōu)化的兩種混合優(yōu)化算法[J]. 控制與決策, 2009, 24(8): 1172~1176.
掃碼關注
考研信息一網(wǎng)打盡
網(wǎng)站介紹 關于我們 聯(lián)系方式 廣告業(yè)務 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號