流體力學(xué)和傳熱(英文版)/流動非線性及其同倫分析 (美)瓦捷拉維魯(VAJRA ..
- 所屬分類:
文藝傳媒培..
- 作者:
- 出版社:
- ISBN:9787040354492
- 出版日期:
-
原價(jià):
¥69.00元
現(xiàn)價(jià):¥0.00元
-
本書信息由合作網(wǎng)站提供,請前往以下網(wǎng)站購買: 京東商城
當(dāng)當(dāng)網(wǎng)
圖書簡介
品牌:圖書詳情
商品基本信息,請以下列介紹為準(zhǔn) 商品名稱: 流體力學(xué)和傳熱(英文版)/流動非線性及其同倫分析 作者: (美)瓦捷拉維魯(VAJRA 市場價(jià): 69元 文軒網(wǎng)價(jià): 51.8元【75折】 ISBN號: 9787040354492 出版社: 高等教育出版社 商品類型: 圖書
其他參考信息(以實(shí)物為準(zhǔn)) 裝幀:精裝 開本:其他 語種:中文 出版時(shí)間:2012-08-01 版次:1 頁數(shù): 印刷時(shí)間:2012-08-01 印次:1 字?jǐn)?shù):
目錄 1 Introduction
References
2 Principles of Homotopy Analysis
2.1 Principles of homotopy and the homotopy analysis method.
2.2 Construction of the deformation equations
2.3 Construction of the series solution
2.4 Conditions for the convergence of the series solutions
2.5 Existence and uniqueness of solutions obtained by homotopy analysis
2.6 Relations between the homotopy analysis method and other analytical methods
2.7 Homotopy analysis method for the Swift Hohenberg equation
2.7.1 Application of the homotopy analysis method
2.7.2 Convergence of the series solution and discussion of results
2.8 Incompressible viscous conducting fluid approaching a permeable stretching surface
2.8.1 Exact solutions for some spe cases
2.8.2 The case of G≠0
2.8.3 The case of G=0
2.8.4 Numerical solutions and discussion of the results.
2.9 Hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet
2.9.1 Formulation of the mathematical problem
2.9.2 Exact solutions
2.9.3 Constructing analytical solutions via homotopy analysis
References
3 Methods for the Control of Convergence in Obtained Solutions
3.1 Selection of the auxiliary linear operator and base function representation
3.1.1 Method oflinear partition matching
3.1.2 Method of highest order differential matching
3.1.3 Method of complete differential matching
3.1.4 Initial versus boundary value problems
3.1.5 Additional options for the selection of an auxiliary linear operator
3.1.6 Remarks on the solution expression
3.2 The role of the auxiliary function
3.3 Selection of the convergence control parameter
3.4 0ptimal convergence control parameter value and the Lane-Emden equation of the first kind
3.4.1 Physical background
3.4.2 Analytic solutions via Taylor series
3.4.3 Analytic solutions via homotopy analysis
References
4 Additional Techniques
4.1 Construction of multiple homotopies for coupled equations
4.2 Selection of an auxiliary nonlinear operator
4.3 Validation of the convergence control parameter
4.3.1 Convergence controlparameter plots ("h-plots")
4.3.2 Minimized residual errors
4.3.3 Minimized approximate residual errors
4.4 Multiple homotopies and the construction of solutions to the Foppl-von Karman equations governing defiections of a thin flat plate
4.4.1 Physical background
4.4.2 Linearization and construction of perturbation solutions
4.4.3 Recursive solutions for the clamped edge boundary data
4.4.4 Spe case: The thin plate limit h→0,v2→1
4.4.5 Control of error and selection of the convergence control parameters
4.5 Nonlinear auxiliary operators and local solutions to the Drinfel'd-Sokolov equations
4.6 Recent work on advanced techniques in HAM
4.6.1 Mathematical properties of h-curve in the frame work of the homotopy analysis method
4.6.2 Predictor homotopy analysis method andits application to some nonlinear problems
4.6.3 An optimal homotopy-analysis approach for strongly nonlinear differential equations
4.6.4 On the homotopy multiple-variable method and its applications in the interactions of nonlinear gravity
References
5 Application of the Homotopy Analysis Method to Fluid Flow Problems
6 Further Applications of the Homotopy Analysis Method
Subject Index
Author Index
目錄
品牌:圖書
商品基本信息,請以下列介紹為準(zhǔn) | |
商品名稱: | 流體力學(xué)和傳熱(英文版)/流動非線性及其同倫分析 |
作者: | (美)瓦捷拉維魯(VAJRA |
市場價(jià): | 69元 |
文軒網(wǎng)價(jià): | 51.8元【75折】 |
ISBN號: | 9787040354492 |
出版社: | 高等教育出版社 |
商品類型: | 圖書 |
其他參考信息(以實(shí)物為準(zhǔn)) | ||
裝幀:精裝 | 開本:其他 | 語種:中文 |
出版時(shí)間:2012-08-01 | 版次:1 | 頁數(shù): |
印刷時(shí)間:2012-08-01 | 印次:1 | 字?jǐn)?shù): |
目錄 | |
1 Introduction References 2 Principles of Homotopy Analysis 2.1 Principles of homotopy and the homotopy analysis method. 2.2 Construction of the deformation equations 2.3 Construction of the series solution 2.4 Conditions for the convergence of the series solutions 2.5 Existence and uniqueness of solutions obtained by homotopy analysis 2.6 Relations between the homotopy analysis method and other analytical methods 2.7 Homotopy analysis method for the Swift Hohenberg equation 2.7.1 Application of the homotopy analysis method 2.7.2 Convergence of the series solution and discussion of results 2.8 Incompressible viscous conducting fluid approaching a permeable stretching surface 2.8.1 Exact solutions for some spe cases 2.8.2 The case of G≠0 2.8.3 The case of G=0 2.8.4 Numerical solutions and discussion of the results. 2.9 Hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet 2.9.1 Formulation of the mathematical problem 2.9.2 Exact solutions 2.9.3 Constructing analytical solutions via homotopy analysis References 3 Methods for the Control of Convergence in Obtained Solutions 3.1 Selection of the auxiliary linear operator and base function representation 3.1.1 Method oflinear partition matching 3.1.2 Method of highest order differential matching 3.1.3 Method of complete differential matching 3.1.4 Initial versus boundary value problems 3.1.5 Additional options for the selection of an auxiliary linear operator 3.1.6 Remarks on the solution expression 3.2 The role of the auxiliary function 3.3 Selection of the convergence control parameter 3.4 0ptimal convergence control parameter value and the Lane-Emden equation of the first kind 3.4.1 Physical background 3.4.2 Analytic solutions via Taylor series 3.4.3 Analytic solutions via homotopy analysis References 4 Additional Techniques 4.1 Construction of multiple homotopies for coupled equations 4.2 Selection of an auxiliary nonlinear operator 4.3 Validation of the convergence control parameter 4.3.1 Convergence controlparameter plots ("h-plots") 4.3.2 Minimized residual errors 4.3.3 Minimized approximate residual errors 4.4 Multiple homotopies and the construction of solutions to the Foppl-von Karman equations governing defiections of a thin flat plate 4.4.1 Physical background 4.4.2 Linearization and construction of perturbation solutions 4.4.3 Recursive solutions for the clamped edge boundary data 4.4.4 Spe case: The thin plate limit h→0,v2→1 4.4.5 Control of error and selection of the convergence control parameters 4.5 Nonlinear auxiliary operators and local solutions to the Drinfel'd-Sokolov equations 4.6 Recent work on advanced techniques in HAM 4.6.1 Mathematical properties of h-curve in the frame work of the homotopy analysis method 4.6.2 Predictor homotopy analysis method andits application to some nonlinear problems 4.6.3 An optimal homotopy-analysis approach for strongly nonlinear differential equations 4.6.4 On the homotopy multiple-variable method and its applications in the interactions of nonlinear gravity References 5 Application of the Homotopy Analysis Method to Fluid Flow Problems 6 Further Applications of the Homotopy Analysis Method Subject Index Author Index |