網站介紹 關于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號
關于線性代數(shù)關于解方程這部分的出題一般是會出一道大題,而向量的線性相關性問題一般轉化為線性方程組有無解的問題,因此同學們可以把兩者串聯(lián)在一起進行復習。下面為大家梳理線性代數(shù)方程組的相關知識與應用。
其中我們應當掌握:
1、非齊次線性方程組解的結構及通解;
2、齊次線性方程組的基礎解系、通解及解空間的概念,齊次線性方程組的基礎解系和通解的求法;
3、齊次線性方程組有非零解的充分必要條件,非齊次線性方程組有解的充分必要條件;
4、矩陣初等變換的概念,初等矩陣的性質,矩陣等價的概念,矩陣的秩的概念,用初等變換求矩陣的秩和逆矩陣;
5、向量、向量的線性組合與線性表示的概念;
6、用初等行變換求解線性方程組的方法;
7、基變換和坐標變換公式,過渡矩陣。(數(shù)一)
8、向量空間、子空間、基底、維數(shù)、坐標等概念;(數(shù)一)
9、向量組線性相關、線性無關的概念,向量組線性相關、線性無關的有關性質及判別法;
10、向量組的極大線性無關組和向量組的秩的概念和求解;
11、向量組等價的概念,矩陣的秩與其行(列)向量組的秩之間的關系;
矩陣的特征值特征向量與二次型相當于是求解線性方程組的應用,出題比較靈活,有些題目技巧性較強,復習起來也是比較有意思的一章。在考試中也是比較容易出大題的內容。
其中我們應當掌握:
1、規(guī)范正交基、正交矩陣的概念以及它們的性質;
2、內積的概念,線性無關向量組正交規(guī)范化的施密特(Schmidt)方法;
3、矩陣的特征值和特征向量的概念及性質,求矩陣的特征值和特征向量;
4、實對稱矩陣的特征值和特征向量的性質;
5、相似矩陣的概念、性質,矩陣可相似對角化的充分必要條件,將矩陣化為相似對角矩陣的方法;
6、二次型及其矩陣表示,二次型秩的概念,合同變換與合同矩陣的概念,二次型的標準形、規(guī)范形的概念以及慣性定理;
7、正定二次型、正定矩陣的概念和判別法。
8、正交變換化二次型為標準形,配方法化二次型為標準形;
來源未注明“中國考研網”的資訊、文章等均為轉載,本網站轉載出于傳遞更多信息之目的,并不意味著贊同其觀點或證實其內容的真實性,如涉及版權問題,請聯(lián)系本站管理員予以更改或刪除。如其他媒體、網站或個人從本網站下載使用,必須保留本網站注明的"稿件來源",并自負版權等法律責任。
來源注明“中國考研網”的文章,若需轉載請聯(lián)系管理員獲得相應許可。
聯(lián)系方式:chinakaoyankefu@163.com
掃碼關注
了解考研最新消息