網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號(hào)
在考研數(shù)學(xué)中,線性代數(shù)這一部分因?yàn)樗嫉目荚囶}型不多、計(jì)算方法比較初等、計(jì)算量比較大等特點(diǎn),導(dǎo)致很多考研的小伙伴們對(duì)線性代數(shù)感到棘手。幾點(diǎn)提醒如下:
1.理解與把握基本概念,熟練運(yùn)用基本運(yùn)算
線性代數(shù)的概念很多,重要的有:代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(jià)(矩陣、向量組),線性組合與線性表出,線性相關(guān)與線性無(wú)關(guān),極大線性無(wú)關(guān)組,基礎(chǔ)解系與通解,解的結(jié)構(gòu)與解空間,特征值與特征向量,相似與相似對(duì)角化,二次型的標(biāo)準(zhǔn)形與規(guī)范形,正定,合同變換與合同矩陣。線性代數(shù)中運(yùn)算法則多,應(yīng)整理清楚不要混淆,基本運(yùn)算與基本方法要過(guò)關(guān),重要的有:行列式(數(shù)字型、字母型)的計(jì)算,求逆矩陣,求矩陣的秩,求方陣的冪,求向量組的秩與極大線性無(wú)關(guān)組,線性相關(guān)的判定或求參數(shù),求基礎(chǔ)解系,求非齊次線性方程組的通解,求特征值與特征向量(定義法,特征多項(xiàng)式基礎(chǔ)解系法),判斷與求相似對(duì)角矩陣,用正交變換化實(shí)對(duì)稱矩陣為對(duì)角矩陣(亦即用正交變換化二次型為標(biāo)準(zhǔn)形)。
2.重視基本概念、基本性質(zhì)、基本方法的理解和掌握
基本概念、基本性質(zhì)和基本方法一直是考研數(shù)學(xué)的重點(diǎn),線性代數(shù)更是如此。從多年的閱卷情況和經(jīng)驗(yàn)看,有些考生對(duì)基本概念掌握不夠牢固,理解不夠透徹,在答題中對(duì)基本性質(zhì)的應(yīng)用不知如何下手,因此,造成許多不應(yīng)該的失分現(xiàn)象。所以,考生在復(fù)習(xí)中一定要重視基本概念、基本性質(zhì)和基本方法的理解與掌握,多做一些基本題來(lái)鞏固基本知識(shí)。
3.綜合掌握“一條主線,兩種運(yùn)算,三個(gè)工具”
復(fù)習(xí)過(guò)程中,綜合掌握“一條主線,兩種運(yùn)算,三個(gè)工具”。一條主線是解線性方程組,線代概念非常多而且相互聯(lián)系,但線代貫穿的主線求方程組的解,只要將方程組的解的概念和一般方法理解透徹,再回過(guò)頭看前面的內(nèi)容就非常簡(jiǎn)單。兩種運(yùn)算是求行列式、矩陣的初等行(列)變換,三個(gè)工具是行列式、矩陣、向量。其中,向量組線性相關(guān)性是難點(diǎn),要理解記憶各條定理,理清其中關(guān)系,多做題鞏固知識(shí)點(diǎn)。特征向量與二次型雖不難,但年年必考,計(jì)算能力要跟上,多做題才能提高正確率。
4.加強(qiáng)綜合能力的訓(xùn)練,培養(yǎng)分析問(wèn)題和解決問(wèn)題的能力
從近十年特別是近兩年的研究生入學(xué)考試試題看,加強(qiáng)了對(duì)考生分析問(wèn)題和解決問(wèn)題能力的考核。在線性代數(shù)的兩個(gè)大題中,基本上都是多個(gè)知識(shí)點(diǎn)的綜合。從而達(dá)到對(duì)考生的運(yùn)算能力、抽象概括能力、邏輯思維能力和綜合運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力的考核。因此,在打好基礎(chǔ)的同時(shí),通過(guò)做一些綜合性較強(qiáng)的習(xí)題(或做近幾年的研究生考題),邊做邊總結(jié),以加深對(duì)概念、性質(zhì)內(nèi)涵的理解和應(yīng)用方法的掌握。
5.網(wǎng)狀化知識(shí)結(jié)構(gòu),提高綜合分析能力
線性代數(shù)從內(nèi)容上看縱橫交錯(cuò),前后聯(lián)系緊密,環(huán)環(huán)相扣,相互滲透,因此解題方法靈活多變,復(fù)習(xí)時(shí)應(yīng)當(dāng)常問(wèn)自己做得對(duì)不對(duì),再問(wèn)做得好不好。只有不斷地歸納總結(jié),努力搞清內(nèi)在聯(lián)系,使所學(xué)知識(shí)融會(huì)貫通,接口與切入點(diǎn)多了,熟悉了,思路自然就開(kāi)闊了。
歷年真題中,兩道大題考試內(nèi)容。考生應(yīng)注意掌握知識(shí)點(diǎn)間的聯(lián)系與區(qū)別,例如向量組的秩與矩陣的秩之間的聯(lián)系,向量的線性相關(guān)性與齊次方程組是否有非零解之間的聯(lián)系,向量的線性表示與非齊次線性方程組解的討論之間的聯(lián)系,實(shí)對(duì)稱陣的對(duì)角化與實(shí)二次型化標(biāo)準(zhǔn)形之間的聯(lián)系等。靈活掌握他們之間的聯(lián)系與區(qū)別,對(duì)做線性代數(shù)的兩個(gè)大題在解題思路和方法上會(huì)有很大的幫助。
6.注重分析一些重要概念和方法之間的聯(lián)系和區(qū)別
線性代數(shù)的內(nèi)容不多,但基本概念和性質(zhì)較多。他們之間的聯(lián)系也比較多,特別要根據(jù)每年線性代數(shù)考試的兩個(gè)大題內(nèi)容,找出所涉及到的概念與方法之間的聯(lián)系與區(qū)別。例如: 向量的線性表示與非齊次線性方程組解的討論之間的聯(lián)系;向量的線性相關(guān)(無(wú)關(guān))與齊次線性方程組有非零解(僅有零解)的討論之間的聯(lián)系;實(shí)對(duì)稱陣的對(duì)角化與實(shí)二次型化標(biāo)準(zhǔn)型之間的聯(lián)系等。掌握他們之間的聯(lián)系與區(qū)別,對(duì)大家做線性代數(shù)的兩個(gè)大題在解題思路和方法上會(huì)有很大的幫助。
7.加強(qiáng)邏輯性,正確簡(jiǎn)明敘述表述
線性代數(shù)對(duì)于抽象性與邏輯性有較高的要求,通過(guò)證明題可以了解考生對(duì)數(shù)學(xué)主要原理、定理的理解與掌握程度,考查考生的抽象思維能力、邏輯推理能力。大家復(fù)習(xí)整理時(shí),應(yīng)當(dāng)搞清公式、定理成立的條件,不能張冠李戴,同時(shí)還應(yīng)注意語(yǔ)言的敘述表達(dá)應(yīng)準(zhǔn)確、簡(jiǎn)明。
8.不要陷入行列式的復(fù)雜計(jì)算之中
行列式是線性代數(shù)中的基本工具,在研究線性方程組和特征值和特征向量時(shí)會(huì)用到,有些行列式的計(jì)算很復(fù)雜,計(jì)算量也很大,但考研大綱對(duì)這部分內(nèi)容的要求并不高,只是要求會(huì)用行列式的性質(zhì)和按行(列)展開(kāi)定理計(jì)算行列式,該部分內(nèi)容不是考試的重點(diǎn),因此不要在這方面花太多時(shí)間,只要掌握基本的公式和計(jì)算方法即可。從歷年考研試題分布來(lái)看,涉及行列式計(jì)算的題型有4種形式:一是單純的行列式計(jì)算,即題目給出一個(gè)具體行列式,要求計(jì)算其值,二是給出一些抽象矩陣(方陣)及相應(yīng)條件,要求計(jì)算其矩陣行列式的值,三是在解線性方程組時(shí)需要計(jì)算其系數(shù)矩陣的行列式的值,四是在求解特征值時(shí)可能需要計(jì)算特征方程的根,這4種題型考生在復(fù)習(xí)時(shí)都要做一些題,掌握其基本解題方法。
來(lái)源未注明“中國(guó)考研網(wǎng)”的資訊、文章等均為轉(zhuǎn)載,本網(wǎng)站轉(zhuǎn)載出于傳遞更多信息之目的,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,如涉及版權(quán)問(wèn)題,請(qǐng)聯(lián)系本站管理員予以更改或刪除。如其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)站下載使用,必須保留本網(wǎng)站注明的"稿件來(lái)源",并自負(fù)版權(quán)等法律責(zé)任。
來(lái)源注明“中國(guó)考研網(wǎng)”的文章,若需轉(zhuǎn)載請(qǐng)聯(lián)系管理員獲得相應(yīng)許可。
聯(lián)系方式:chinakaoyankefu@163.com
掃碼關(guān)注
了解考研最新消息
網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號(hào)