網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號
線性代數(shù)作為數(shù)一、數(shù)二、數(shù)三都考的科目,相對高數(shù)來說屬于比較簡單、容易掌握的知識,所以在考研數(shù)學(xué)中,線代的學(xué)習(xí)也是要多加關(guān)注的。今天小編為大家?guī)砭性代數(shù)中重要考點及?碱}型,一起鞏固學(xué)習(xí)吧!
一、行列式
行列式在整張試卷中所占比例不是很大,一般以填空題、選擇題為主,它是必考內(nèi)容,不只是考察行列式的概念、性質(zhì)、運(yùn)算,與行列式有關(guān)的考題也不少。
例如方陣的行列式、逆矩陣、向量組的線性相關(guān)性、矩陣的秩、線性方程組、特征值、正定二次型與正定矩陣等問題中都會涉及到行列式。
如果試卷中沒有獨(dú)立的行列式的試題,必然會在其他章、節(jié)的試題中得以體現(xiàn)。所以要熟練掌握行列式常用的計算方法。
1、重點內(nèi)容:行列式計算
(1)降階法
這是計算行列式的主要方法,即用展開定理將行列式降階。但在展開之前往往先用行列式的性質(zhì)對行列式進(jìn)行恒等變形,化簡之后再展開。
(2)特殊的行列式
有三角行列式、范德蒙行列式、行和或列和相等的行列式、三線型行列式、爪型行列式等等,必須熟練掌握相應(yīng)的計算方法。
2、常見題型:
(1)數(shù)字型行列式的計算
(2)抽象行列式的計算
(3)含參數(shù)的行列式的計算
(4)代數(shù)余子式的線性組合
二、向量
向量部分既是重點又是難點,由于n維向量的抽象性及在邏輯推理上的較高要求,導(dǎo)致考生在學(xué)習(xí)理解上的困難?忌辽僖崂砬宄R點之間的關(guān)系,最好能獨(dú)立證明相關(guān)結(jié)論。
1、重點內(nèi)容:
(1)向量的線性表示
線性表示經(jīng)常和方程組結(jié)合考察,特點,表面問一個向量可否由一組向量線性表示,其實本質(zhì)需要轉(zhuǎn)換成方程組的內(nèi)容來解決,經(jīng)常結(jié)合出大題。
(2)向量組的線性相關(guān)性
向量組的線性相關(guān)性是線性代數(shù)的重點,也是考研的重點。同學(xué)們一定要吃透向量組線性相關(guān)性的概念,熟練掌握有關(guān)性質(zhì)及判定法并能靈活應(yīng)用,還應(yīng)與線性表出、向量組的秩及線性方程組等相聯(lián)系,從各個側(cè)面加強(qiáng)對線性相關(guān)性的理解。
(3)向量組等價
要注意向量組等價與矩陣等價的區(qū)別。
(4)向量組的極大線性無關(guān)組和向量組的秩
(5)向量空間(數(shù)一)
2、常見題型:
(1)判定向量組的線性相關(guān)性
(2)向量組線性相關(guān)性的證明
(3)判定一個向量能否由一向量組線性表出
(4)向量組的秩和極大無關(guān)組的求法
(5)有關(guān)秩的證明
(6)有關(guān)矩陣與向量組等價的命題
(7)與向量空間有關(guān)的命題。
三、線性方程組
往年考題中,方程組出現(xiàn)的頻率較高,幾乎每年都有考題,也是線性代數(shù)部分考查的重點內(nèi)容。
但也不會簡單到僅考方程組的計算,還需靈活運(yùn)用,比如2014年的線性代數(shù)第一道解答題,解矩陣方程,而且系數(shù)矩陣是不可逆的,這是考研以來第一次這樣考,最后歸結(jié)為求三個非齊次線性方程組通解。
1、重點內(nèi)容:
(1)齊次線性方程組有非零解和非齊次線性方程組有解的判定及解的結(jié)構(gòu)
(2)齊次線性方程組基礎(chǔ)解系的求解與證明
(3)齊次(非齊次)線性方程組的求解(含對參數(shù)取值的討論)。
2、常見題型:
(1)線性方程組的求解
(2)方程組解向量的判別及解的性質(zhì)
(3)齊次線性方程組的基礎(chǔ)解系
(4)非齊次線性方程組的通解結(jié)構(gòu)
(5)兩個方程組的公共解、同解問題
四、特征值與特征向量
特征值、特征向量是線性代數(shù)的重點內(nèi)容,是考研的重點之一,題多分值大。
1、重點內(nèi)容:
(1)特征值和特征向量的概念及計算
(2)方陣的相似對角化
(3)實對稱矩陣的正交相似對角化
2、常見題型:
(1)數(shù)值矩陣的特征值和特征向量的求法
(2)抽象矩陣特征值和特征向量的求法
(3)矩陣相似的判定及逆問題(2014出大題)
(3)矩陣的相似對角化及逆問題
(4)由特征值或特征向量反求A
(5)有關(guān)實對稱矩陣的問題
五、二次型
由于二次型與它的實對稱矩陣式一一對應(yīng)的,所以二次型的很多問題都可以轉(zhuǎn)化為它的實對稱矩陣的問題,可見正確寫出二次型的矩陣式處理二次型問題的一個基礎(chǔ)。
1、重點內(nèi)容:
(1)掌握二次型及其矩陣表示,了解二次型的秩和標(biāo)準(zhǔn)形等概念;
(2)了解二次型的規(guī)范形和慣性定理;
(3)掌握用正交變換并會用配方法化二次型為標(biāo)準(zhǔn)形;
(4)理解正定二次型和正定矩陣的概念及其判別方法。
2、常見題型:
(1)二次型表成矩陣形式
(2)化二次型為標(biāo)準(zhǔn)形
(3)二次型正定性的判別
六、矩陣
矩陣是線性代數(shù)的核心,是后續(xù)各章的基礎(chǔ)。矩陣的概念、運(yùn)算及理論貫穿線性代數(shù)的始終。這部分考點較多。涉及伴隨矩陣的定義、性質(zhì)、行列式、逆矩陣、秩及包含伴隨矩陣的矩陣方程是矩陣試題中的一類常見試題。
有些性質(zhì)得證明必須能自己推導(dǎo)。這幾年還經(jīng)常出現(xiàn)有關(guān)初等變換與初等矩陣的命題。
1、重點內(nèi)容:
(1)矩陣的運(yùn)算
(2)伴隨矩陣
(3)可逆矩陣
(4)初等變換和初等矩陣
(5)矩陣的秩
2、常見題型:
(1)計算方陣的冪
(2)與伴隨矩陣相關(guān)聯(lián)的命題
(3)有關(guān)初等變換的命題
(4)有關(guān)逆矩陣的計算與證明
(5)解矩陣方程(2013年和2014年連續(xù)出大題,要重視)
(6)矩陣秩的計算和證明
以上就是線性代數(shù)的重要考點及?碱}型,大家一定要對照著說明學(xué)習(xí)研究,爭取線代少丟分,為取得數(shù)學(xué)好成績打好基礎(chǔ)。
來源未注明“中國考研網(wǎng)”的資訊、文章等均為轉(zhuǎn)載,本網(wǎng)站轉(zhuǎn)載出于傳遞更多信息之目的,并不意味著贊同其觀點或證實其內(nèi)容的真實性,如涉及版權(quán)問題,請聯(lián)系本站管理員予以更改或刪除。如其他媒體、網(wǎng)站或個人從本網(wǎng)站下載使用,必須保留本網(wǎng)站注明的"稿件來源",并自負(fù)版權(quán)等法律責(zé)任。
來源注明“中國考研網(wǎng)”的文章,若需轉(zhuǎn)載請聯(lián)系管理員獲得相應(yīng)許可。
聯(lián)系方式:chinakaoyankefu@163.com
掃碼關(guān)注
了解考研最新消息
網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號